Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Montane snowpack in the Sierra Nevada provides critical water resources for ecological functions and downstream communities. Forest removal allows us to manage the snowpack in montane forests and mitigate the effect of climate on water resources. Little is known about the mid- to long-term effects that changing snowpack following forest disturbance has on tree re-growth, and how tree re-growth might in turn affect snowpack accumulation and melt. We use a 1-m resolution process-based snow model (SnowPALM) coupled with a stand-scale ecohydrological model (RHESSys) that resolves water, energy and carbon cycling to represent tree growth, and to quantify how trees and snowpack co-evolve following two disturbance scenarios (thinning and clearcutting) over a period of 40 years in a small 100 m x 234 m mid-elevation forested area in the Sierra Nevada, California. We first calculate the impact of forest disturbance on the snowpack assuming no tree regrowth and then we compare it with scenarios that include the feedback of trees regrowth on the snowpack. Without tree regrowth, snow accumulation and melt volume increase on average by roughly 5 % and 13 % following thinning and clearcutting, respectively. With tree regrowth, a regrowth rate of 0.75 and 1.15 m/decade are found for thinning and clearcutting, respectively, along with a decrease of melt volumes of 2.5 to 0.9 mm/decade, respectively. About 50 % of the snowmelt volume gains from forest thinning are lost after 40 years of regrowth, whereas only about 7 % is lost from clearcutting after the same period, which are largely explained by changes to canopy interception and sublimation. This proof-of-concept study is expected to shed light into the coevolution of montane forests and snowpack response to forest disturbance.more » « lessFree, publicly-accessible full text available May 8, 2026
-
Snowmelt is a critical water resource in the Sierra Nevada impactingpopulations in California and Nevada. In this region, forest managersuse treatments like selective thinning to encourage resilient ecosystemsbut rarely prioritize snowpack retention due to a lack of simplerecommendations and the importance of other management objectives likewildfire mitigation and wildlife habitat. We use light detection andranging (lidar) data collected over multiple snow accumulation seasonsin the Sagehen Creek Basin, central Sierra Nevada in California, USA, toinvestigate how snowpack accumulation and ablation are affected byforest structure metrics at coarse, stand-scales (e.g., fraction ofvegetation, or fVEG) and fine, tree-scales (e.g., a modified leaf areaindex, and the ratio of gap-width to average tree height). Using a newlydeveloped lidar point cloud filtering method and an “open-areareference” approach, we show that for each 10% decrease in fVEG thereis a ~30% increase in snow accumulation and a~15% decrease in ablation rate at the Sagehen fieldsite. To understand variability around these relationships, we use arandom forest analysis to demonstrate that areas with fVEG greater than~30% have the greatest potential increased accumulationresponse after forest removal. This spatial information allows us toassess the utility of completed and planned forest restorationstrategies in targeting areas with the highest potential snowpackresponse. Our new lidar processing methods and reference-based approachare easily transferrable to other areas where they could improvedecision support and increase water availability from landscape-scaleforest restoration projects.more » « less
-
Abstract. Climate warming will cause mountain snowpacks to melt earlier, reducing summer streamflow and threatening water supplies and ecosystems. Quantifying how sensitive streamflow timing is to climate change and where it is most sensitive remain key questions. Physically based hydrological models are often used for this purpose; however, they have embedded assumptions that translate into uncertain hydrological projections that need to be quantified and constrained to provide reliable inferences. The purpose of this study is to evaluate differences in projected end-of-century changes to streamflow timing between a new empirical model based on diel (daily) streamflow cycles and regional land surface simulations across the mountainous western USA. We develop an observational technique for detecting streamflow responses to snowmelt using diel cycles of incoming solar radiation and streamflow to detect when snowmelt occurs. We measure the date of the 20th percentile of snowmelt days (DOS20) across 31 western USA watersheds affected by snow, as a proxy for the beginning of snowmelt-initiated streamflow. Historic DOS20 varies from mid-January to late May among our sites, with warmer basins having earlier snowmelt-mediated streamflow. Mean annual DOS20 strongly correlates with the dates of 25 % and 50 % annual streamflow volume (DOQ25 and DOQ50, both R2=0.85), suggesting that a 1 d earlier DOS20 corresponds with a 1 d earlier DOQ25 and 0.7 d earlier DOQ50. Empirical projections of future DOS20 based on a stepwise multiple linear regression across sites and years under the RCP8.5 scenario for the late 21st century show that DOS20 will occur on average 11±4 d earlier per 1 ∘C of warming. However, DOS20 in colder watersheds (mean November–February air temperature, TNDJF<-8 ∘C) is on average 70 % more sensitive to climate change than in warmer watersheds (TNDJF>0 ∘C). Moreover, empirical projections of DOQ25 and DOQ50 based on DOS20 are about four and two times more sensitive to climate change, respectively, than those simulated by a state-of-the-art land surface model (NoahMP-WRF) under the same scenario. Given the importance of changes in streamflow timing for water resources, and the significant discrepancies found in projected streamflow sensitivity, snowmelt detection methods such as DOS20 based on diel streamflow cycles may help to constrain model parameters, improve hydrological predictions, and inform process understanding.more » « less
-
Abstract The Sierra Nevada has experienced unprecedented wildfires and reduced snowmelt runoff in recent decades, due partially to anthropogenic climate change and over a century of fire suppression. To address these challenges, public land agencies are planning forest restoration treatments, which have the potential to both increase water availability and reduce the likelihood of uncontrollable wildfires. However, the impact of forest restoration on snowpack is site specific and not well understood across gradients of climate and topography. To improve our understanding of how forest restoration might impact snowpack across diverse conditions in the central Sierra Nevada, we run the high‐resolution (1 m) energy and mass balance Snow Physics and Lidar Mapping (SnowPALM) model across five 23–75 km2subdomains in the region where forest thinning is planned or recently completed. We conduct two virtual thinning experiments by removing all trees shorter than 10 or 20 m tall and rerunning SnowPALM to calculate the change in meltwater input. Our results indicate heterogeneous responses to thinning due to differences in climate and wind across our five central Sierra Nevada subdomains. We also predict the largest increases in snow retention when thinning forests with tall (7–20 m) and dense (40–70% canopy cover) trees, highlighting the importance of pre‐thinning vegetation structure. We develop a decision support tool using a random forests model to determine which regions would most benefit from thinning. In many locations, we expect major forest restoration to increase snow accumulation, while other areas with short and sparse canopies, as well as sunny and windy climates, are more likely to see decreased snowpack following thinning. Our decision support tool provides stand‐scale (30 m) information to land managers across the central Sierra Nevada region to best take advantage of climate and existing forest structure to obtain the greatest snowpack benefits from forest restoration.more » « less
-
Abstract Predicting winter flooding is critical to protecting people and securing water resources in California’s Sierra Nevada. Rain-on-snow (ROS) events are a common cause of widespread flooding and are expected to increase in both frequency and magnitude with anthropogenic climate change in this region. ROS flood severity depends on terrestrial water input (TWI), the sum of rain and snowmelt that reaches the land surface. However, an incomplete understanding of the processes that control the flow and refreezing of liquid water in the snowpack limits flood prediction by operational and research models. We examine how antecedent snowpack conditions alter TWI during 71 ROS events between water years 1981 and 2019. Observations across a 500-m elevation gradient from the Independence Creek catchment were input into SNOWPACK, a one-dimensional, physically based snow model, initiated with the Richards equation and calibrated with collocated snow pillow observations. We compare observed “historical” and “scenario” ROS events, where we hold meteorologic conditions constant but vary snowpack conditions. Snowpack variables include cold content, snow density, liquid water content, and snow water equivalent. Results indicate that historical events with TWI > rain are associated with the largest observed streamflows. A multiple linear regression analysis of scenario events suggests that TWI is sensitive to interactions between snow density and cold content, with denser (>0.30 g cm−3) and colder (<−0.3 MJ of cold content) snowpacks retaining >50 mm of TWI. These results highlight the importance of hydraulic limitations in dense snowpacks and energy limitations in warm snowpacks for retaining liquid water that would otherwise be available as TWI for flooding. Significance StatementThe purpose of this study is to understand how the snowpack modulates quantities of water that reach the land surface during rain-on-snow (ROS) events. While the amount of near-term storm rainfall is reasonably predicted by meteorologists, major floods associated with ROS are more difficult to predict and are expected to increase in frequency. Our key findings are that liquid water inputs to the land surface vary with snowpack characteristics, and although many hydrologic models incorporate snowpack cold content and density to some degree, the complexity of ROS events justifies the need for additional observations to improve operational forecasting model results. Our findings suggest additional comparisons between existing forecasting models and those that physically represent the snowpack, as well as field-based observations of cold content and density and liquid water content, would be useful follow-up investigations.more » « less
An official website of the United States government
